top of page
Pricing Plan Background.jpg

MoML 2023

Molecular Machine Learning Conference

Our Mission

This conference brings together students, experts, and leaders across

areas with the goal of advancing how machine learning methods can

address key scientific goals related to molecular modeling, molecular interactions, and  therapeutic design. The conference provides an open

and lively place to discuss, learn, and innovate, for students and

experts alike. 

Shape (4).png

Meet the Speakers

Shape (3).png
Dominique Beaini.png
right-icon.png

Mila - Quebec AI Institute

pink-arrow.png
card (5).png
right-icon.png

Harvard University

pink-arrow.png
card (6).png

New York University

right-icon.png
pink-arrow.png
card (9).png
right-icon.png

Columbia University

pink-arrow.png
card (13).png

University of Pennsylvania

right-icon.png
pink-arrow.png
Dominic Masters.png
right-icon.png

Google DeepMind

pink-arrow.png
Gábor Csányi.png

University of Cambridge

right-icon.png
pink-arrow.png
Anna Panchenko.png
right-icon.png

Queen's University

pink-arrow.png

Conference Playlist

MoML 2024: Opening

Remarks

play (1).png
play-blue.png

MoML 2023: Opening Remarks

Speakers: Yoshua Bengio & Dominique Beaini

OpenFold: Lessons Learned and Insights Gained From Rebuilding and Retraining AlphaFold2

play (1).png
play-blue.png

OpenFold: Lessons Learned and Insights Gained

From Rebuilding and Retraining AlphaFold2

Accelerating Cryptic

Pocket Discovery With

Deep Learning

play (1).png
play-blue.png

Accelerating Cryptic Pocket Discovery

With Deep Learning. Speaker: Greg Bowman

Molecular Machine

Learning at Scale:

Lessons from the OGB Large Scale Challenge

play (1).png
play-blue.png

Molecular Machine

Learning at Scale:

Lessons from the OGB Large Scale Challenge. Graphcore

On the Future of AI

for Drug Discovery

play (1).png
play-blue.png

On the Future of AI for Drug Discovery

Speaker: Yoshua Bengio, Marinka Zitnik, Djork-Arné Clevert

Watch full

playlist

image.png
right-icon-1.png
bottom of page